COURSE TITLE
Speciality Glazes and Colour Development

1.0 Overview
Students will learn the structure of glaze and the development of colour in a variety of glaze types and finishes. The development of the glaze and colour will be through various testing methodologies for example line blend, tri-axial blend, square blend & colour blends. The testing & development program will lead to the student developing their own palette of glazes. Occupational health and safety instruction is an integral part of this course.

2.0 Objectives
The primary objectives of the course are as follows:
i) Introducing students to the fundamentals of glaze chemistry.
ii) Understanding methodologies to create glaze colour-pallettes.
 iii) Hands-on approaches for testing and developing glaze compositions.
iv) Developing procedures for line bi-axial, tri-axial, square and colour blends.
v) Developing confidence in glaze application, testing and analysis.

3.0 Teaching Faculty
Prof. Greg Daly, Sandeep Manchekar

4.0 Course Details
4.1
Module A: 30 Jan’18 - 3 Feb’18: Glazes and Development of Colour
Module B: 4 Feb’18 - 5 Feb’18: Lustre Glazes

This course is organized in two modules that could be taken together or independently. The first module of 5 days on Glaze Theory and Colour Development would be conducted by Greg Daly and the second module of 2 days on Lustre Glazes would be conducted by Sandeep Manchekar.

The course would introduce students to the fundamentals of glaze chemistry. It would build an understanding of methodologies used to create glaze colour-palettes. A hands-on approach is followed for testing and developing glaze compositions. The course would help in developing procedures for line, bi-axial, tri-axial, square and colour blends. Students undertaking the course would be able to develop a confidence in glaze application, testing and analysis.
4.2 Course Schedule

<table>
<thead>
<tr>
<th>Day</th>
<th>Theory</th>
<th>Studio-Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULE A: 30 Jan’18 - 3 Feb’18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 30 Jan’18</td>
<td>An Introduction to Glaze Chemistry</td>
<td>Make tests slabs. 8 extrude test tiles.</td>
</tr>
<tr>
<td></td>
<td>- Introduction to materials and glaze composition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- OH&S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Over view of course and testing tools.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What is a glaze?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Glaze balance. Silica/Flux=silica matts, clear & flux matts</td>
<td></td>
</tr>
<tr>
<td>2 31 Jan’18</td>
<td>The theoretical basis of glaze compositions</td>
<td>Test Random glazes. Materials used in Random glazes.</td>
</tr>
<tr>
<td></td>
<td>- Glaze factors: Composition Materials, Claybody,</td>
<td>Rotation of materials in Random glaze.</td>
</tr>
<tr>
<td></td>
<td>- Firing – Reduction/ Oxidation, time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kilns, Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numbering of tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Materials, fluxes</td>
<td></td>
</tr>
<tr>
<td>3 1 Feb’18</td>
<td>Creating Line Blends and Triaxial Blends</td>
<td>Base glaze: line blend flux & silica into a glaze base.</td>
</tr>
<tr>
<td></td>
<td>- Review random glazes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Testing tools – Line blends/Triaxial,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Square& colour blends.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Line blends – different ways for different purposes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Single, double, large bases small additions.</td>
<td></td>
</tr>
<tr>
<td>4 2 Feb’18</td>
<td>How different metal oxides impart colour</td>
<td>Discuss glazes and their compositions using different metal oxides.</td>
</tr>
<tr>
<td></td>
<td>- Colour response from metal oxides in different base glazes</td>
<td></td>
</tr>
<tr>
<td>5 3 Feb’18</td>
<td>Understanding the role of fluxing agents</td>
<td>Use coloured glaze results substitute different fluxes in to these glazes.</td>
</tr>
<tr>
<td></td>
<td>- Fluxes – controls colour response from oxides.</td>
<td>Students to use their base glaze to develop and do a colour blend.</td>
</tr>
<tr>
<td></td>
<td>Approaches to developing colour palettes</td>
<td>Refine colour blends for out come of glaze finish & colour.</td>
</tr>
<tr>
<td></td>
<td>- Colour blend designing of and demonstration.</td>
<td>Test – changes to glazes. Grid test of glazes.</td>
</tr>
<tr>
<td></td>
<td>- Continue with color blend development</td>
<td>Analysis of Results</td>
</tr>
<tr>
<td>MODULE B: 4-5 February 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 Feb’18</td>
<td>Lustre Glazes</td>
<td>Discuss lustre glazes and their compositions. Testing different lustre glaze compositions.</td>
</tr>
<tr>
<td></td>
<td>- Lustre glazes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Review tests – make changes to base glaze and colour.</td>
<td></td>
</tr>
<tr>
<td>7 5 Feb’18</td>
<td>Glaze-on-glaze (thickness)</td>
<td>Analysis of Results</td>
</tr>
<tr>
<td></td>
<td>- Making of pots / tiles for application</td>
<td></td>
</tr>
</tbody>
</table>

Outcomes

Upon successful completion of this course, students will be able to:

i. Competently utilize a range of skills relevant to Ceramic Glaze and Colour development

ii. Explore the potential of material/s used in Ceramic Glaze and Colour projects

iii. Investigate the inventive application of concepts and processes in relation to Glazes and Colour

iv. Engage with historical and theoretical contexts relevant to Ceramic projects

5.0 Teaching Faculty

Greg Daly is internationally known and respected as a ceramic artist specialising in rich glaze effects, and also as the author of:

ii. Lustre (2011 AC Black UK)

iii. Developing Glazes - (2013 Bloomsbury UK)

His work is represented in 24 international book publications, in 80 national and international art galleries and museums (including the National Gallery of Australia and the Victoria & Albert Museum, London), and he has won 36 national and international awards. He has held over 70 solo exhibitions and was President of Craft Australia from 1992-1995. He has exhibited in over 200 international and national group exhibitions. In 1999 he received an ARC grant to research the effect of firing cycles in the development of copper red glazes.

Sandeep Manchekar is the founder of Anvi pottery and has had several exhibitions, national and international workshops on glaze chemistry and lustre glazes.
Registration Form
The GIAN (Global Initiative of Academic Networks) Course is supported by the MHRD, Government of India. To register for this course you first need to register yourself at: http://www.gian.iitkgp.ac.in/GREGN/index by paying an one time fee of Rs.500/-

Name (in block letters)

Qualification

Designation

Organization

Mailing Address

Mobile

Email

Payment: Rs:____________________
DD No.:______________Dt: __________
(DD in favour of “Registrar, IIT Bombay – CEP a/c”,

Or NEFT/ RTGS
(Please furnish the foll. details if NEFT/RTGS)
Name of A/c Holder
UTR NO./Transaction ID
Name of Bank & Branch
Date of Payment
Amount

Signature of Applicant
Date

COURSE FEE
Participants from abroad: US $500/-

Industry/ Research Organizations/Ceramic Artists/Studio Potters:
INR: 20000/- (Module A)
INR: 5000/- (Module B)

Academic Institutions/ Faculty/ NGO: INR: 10000/-
(All modules)

Students & Research Scholars:
INR: 5000/- (All modules)

The above fees include all instructional materials, computer use for tutorials and assignments, laboratory usage charges, free internet facility.
Subject to availability, the participants will be provided with accommodation on payment basis.

The fees may be paid by demand draft drawn in favour of “The Registrar, IIT Bombay - CEP Account”. Please mail to Raja Mohanty, IDC, IIT Bombay, Powai, Mumbai 400076

Or through NEFT/RTGS:
Name of beneficiary: Registrar, IIT Bombay
Account name: IIT Main Account
Name of Bank: State Bank of India, IIT Powai
Beneficiary A/C No: 0000010725729128
Bank MICR Code: 400002034
IFSC Code: SBIN0001109
SWIFT Code: SBININBB519

(Email details of DD/NEFT/RTGS) to gian2018gregdaly@gmail.com

Course Coordinator
Raja Mohanty
Principal Coordinator

IDC School of Design, IIT Bombay
Powai, Mumbai 400076
Maharashtra
Tel: +91-22-25767825 (O) / Cell: +91 98205 70198
Email: rajam@iitb.ac.in